
sales@frederickscompany.com + 1 215 947 2500 www.frederickscompany.com tfc_an1006 rev A page 1

Application Note AN1006
Obtaining Measurements from TFC Signal Conditioners

Description
This document explains how to obtain tilt measurements from an electrolytic tilt sensor and signal conditioner. It co-
vers schematics and code for each protocol available on signal conditioners from The Fredericks Company. All examples
will show code and circuits with an Arduino Uno, so there will be differences in code when using other platforms. Each
example will provide a raw output from the sensor in a variety of units. Any of these units can be converted to degrees
using the methods explained in Application Note 1005.

Analog
Both the 1-6200-007 and 1-6200-012 signal conditioners have analog outputs. On the 1-6200-007, both axes and the
temperature are output from pins XA, YA, and T respectively. Connecting to the Arduino requires direct connections
from the signal conditioner to the analog input pins of the Arduino.

Figure 1 Schematic for connecting 1-6200-007 to Arduino using analog

Note that the 1-6200-012 signal conditioner does not have an analog temperature output, so temperature must be
read using RS-232. See the section on RS-232 for more information on reading temperature from the 1-6200-012.

With the circuit assembled the data can be read using the Arduino’s analogRead() function. An example of this is shown
below:

 x = analogRead(A0);
 y = analogRead(A1);
 temperature = analogRead(A2);

The result of this code will be a raw value that represents the voltage on the analog pins. The resolution of this meas-
urement will be dependent on the hardware used to read the voltage; on an Arduino Uno, the analog pins have a
resolution of 10 bits.

https://www.frederickscompany.com/application-notes/an-1005-converting-tilt-angle-to-degrees/
https://www.frederickscompany.com/products/1-6200-007/
https://www.frederickscompany.com/products/1-6200-012/

sales@frederickscompany.com + 1 215 947 2500 www.frederickscompany.com tfc_an1006 rev A page 2

PWM
PWM measurements are available on the 1-6200-007 signal conditioner. With PWM, the x and y tilt angles can be read
from the digital XP and YP pins on the signal conditioner. There is no temperature PWM output, so that will have to be
read from the analog pin. A schematic for this setup is shown in figure 2.

Figure 2 Schematic for connecting 1-6200-007 to Arduino using PWM

Note that the PWM outputs can be attached to any digital pins on the Arduino, not just the PWM pins. In this example,
pins D7 and D8 are used, both non-PWM pins.

Reading a PWM signal with an Arduino is best done with the pulseIn() function. The pulseIn() function will time how
long a pulse lasts in either the high or low state. In this case, we will time the high state.

 x = pulseIn(XPIN, HIGH);
 y = pulseIn(YPIN, HIGH);
 temperature = analogRead(A0);

 char res[50];
 sprintf(res, "X: %i, Y: %i, Temperature: %i", x, y, temperature);
 Serial.println(res)

The result will be the length of the pulse in microseconds. The pulseIn() function can read pulses as short as 10 µs,
meaning its measurement of the up to 8ms pulse will have an accuracy similar to a 10-bit output. This accuracy will be
higher if the device reading it can detect smaller pulses.

https://www.frederickscompany.com/products/1-6200-007/

sales@frederickscompany.com + 1 215 947 2500 www.frederickscompany.com tfc_an1006 rev A page 3

SPI
SPI is a synchronous serial communication protocol available on the 1-6200-005 signal conditioner. The protocol works
on a master/slave technique using 4 connections: MISO (Master In Slave Out), MOSI (Master Out Slave In), CLK (Serial
Clock), and SS (Slave Select). The master will send commands to the slave over MOSI (labeled IN on the 1-6200-005),
and the slave will respond over MISO (labeled OUT on the 1-6200-005). CLK is a clock created by the master that
synchronizes the slave’s communication. SS is used to enable a slave; this pin is how SPI supports multiple devices on
one bus (see the “SPI Bus” section for more info).

The Arduino Uno has predefined pins for the MOSI, MISO, and CL. These are shown in the following table:

MOSI D11
MISO D12
CLK D13

The schematic for connecting these to the Arduino is shown in figure 3.

Figure 3 Schematic for connecting 1-6200-005 to Arduino with SPI

To communicate with the sensor, we will use Arduino’s SPI library. SPI.begin() will initialize the SPI library (however it
will not open communications). Since this circuit only has one SPI device, pin 10 (SS) will be set to LOW, enabling the
slave controlled by that pin. This will stay set to LOW for the entire program; there is no reason to disable the slave in
this circuit.

void setup() {
 SPI.begin(); // initialize SPI
 digitalWrite(10, LOW); // enable slave 1
}

https://www.frederickscompany.com/products/1-6200-005/

sales@frederickscompany.com + 1 215 947 2500 www.frederickscompany.com tfc_an1006 rev A page 4

Now that we’ve initialized the library, we must open the connection with the signal conditioner. This is done using the
SPI.beginTransaction() function. This function takes one argument, an SPISettings object. This object will provide all
the necessary information to create the connection. The SPISettings object has three arguments:

1. Maximum clock speed of the slave, which is 20Mhz on the 1-6200-005.
2. The second argument determines whether the SPI interface will use Most Significant Bit or Least Significant

Bit First. For the 1-6200-005 this is Most Significant Bit First (or MSBFIRST).
3. The third argument determines the SPI mode; for the 1-6200-005, SPI mode 2 (CPOL=1, CPHA=0) is used.

 // open SPI communication
 SPI.beginTransaction(SPISettings(20000000, MSBFIRST, SPI_MODE2));

The SPI.transfer() function is used to send and receive data. It will simultaneously send the command and return what-
ever it reads from the MISO pin. Note that the slave will always take one clock cycle to respond; therefore, the result
from each command will not be received until the next cycle. For example, in the code below, the function that sends
the X axis low byte request returns the X axis high byte value because of this delay.

Note that the 0x39 command is essential to getting good measurements. This command tells the board to get a new
measurement of tilt. In the code below, it is sent once in the beginning, and once again at the end of the if statement,
where the low temperature bit is received.

 SPI.transfer(0x39); // update sensor data
 delay(1); // wait for SPI response
 res = SPI.transfer(0x31); // get status, request high x byte
 delay(1); // wait for SPI response

 if (res == 0x2A) { // verify sensor data updated successfully
 high = SPI.transfer(0x32); // get high x byte, request low x byte
 delay(1); // wait for SPI response
 low = SPI.transfer(0x33); // get low x byte, request high y byte
 x = (high << 8) | low; // merge low and high bytes into int

 delay(1); // wait for SPI response
 high = SPI.transfer(0x34); // get high y byte, request low y byte
 delay(1); // wait for SPI response
 low = SPI.transfer(0x35); // get low y byte, request high temperature byte
 y = (high << 8) | low; // merge low and high bytes into int

 delay(1); // wait for SPI response
 high = SPI.transfer(0x36); // get high temp byte, request low temp byte
 delay(1); // wait for SPI response
 low = SPI.transfer(0x39); // get low temperature byte, update sensor data
 temperature = (high << 8) | low; // merge low and high bytes into int
 }

 SPI.endTransaction(); // close the SPI communication

Note that the responses will be in separate high and low bytes. The code above converts these to 16-bit integers using
the expression (high << 8) | low.

sales@frederickscompany.com + 1 215 947 2500 www.frederickscompany.com tfc_an1006 rev A page 5

SPI Bus
It is also possible to connect 1-6200-005 signal conditioners together in an SPI bus. An SPI Bus allows all SPI devices to
share the CLK, MISO, and MOSI connections. Each slave, however, gets its own SS connection, allowing the master to
select which slave it wants to communicate with. The number of SPI devices you can use at once is limited by the
number of independent SS connections you can make. Figure 4 shows the schematic for 2 sensors on an SPI bus with
pins D9 and D10 used as the SS signals.

Figure 4 Schematic for connecting two 1-6200-005’s to Arduino with an SPI bus. Note the separate /SS connections for each device

This code is very similar to the code for the single SPI device; note that the SS pins are changed to control which slave
is communicated with.

https://www.frederickscompany.com/products/1-6200-005/

sales@frederickscompany.com + 1 215 947 2500 www.frederickscompany.com tfc_an1006 rev A page 6

 // open SPI communication
 SPI.beginTransaction(SPISettings(20000000, MSBFIRST, SPI_MODE2));
 digitalWrite(10, LOW); // enable the slave controlled by D10

 SPI.transfer(0x39); // request status
 delay(1);
 res = SPI.transfer(0x31); // get status, request high x byte
 delay(1);

 if (res == 0x2A) {
 hi = SPI.transfer(0x32); // get high x byte, request low x byte
 delay(1);
 lo = SPI.transfer(0x33); // get low x byte, request high y byte
 x = (hi << 8) | lo;

 delay(1);
 hi = SPI.transfer(0x34); // get high y byte, request low y byte
 delay(1);
 lo = SPI.transfer(0x35); // get low y byte, request high temperature byte
 y = (hi << 8) | lo;

 delay(1);
 hi = SPI.transfer(0x36); // get high temperature byte, request low temperature byte
 delay(1);
 lo = SPI.transfer(0x39); // get low temperature byte
 temperature = (hi << 8) | lo;

 }

 digitalWrite(10, HIGH); // disable the slave controlled by D10
 digitalWrite(9, LOW); // enable the slave controlled by D9

 SPI.transfer(0x39); // request status
 delay(1);
 res = SPI.transfer(0x31); // get status, request high x byte
 delay(1);

 if (res == 0x2A) {
 hi = SPI.transfer(0x32); // get high x byte, request low x byte
 delay(1);
 lo = SPI.transfer(0x33); // get low x byte, request high y byte
 x = (hi << 8) | lo;

 delay(1);
 hi = SPI.transfer(0x34); // get high y byte, request low y byte
 delay(1);
 lo = SPI.transfer(0x35); // get low y byte, request high temperature byte
 y = (hi << 8) | lo;

 delay(1);
 hi = SPI.transfer(0x36); // get high temperature byte, request low temperature byte
 delay(1);
 lo = SPI.transfer(0x39); // get low temperature byte
 temperature = (hi << 8) | lo;

 }

 digitalWrite(9, HIGH); // disable the slave controlled by D9
 SPI.endTransaction(); // close the SPI communication

Note that if 2 SPI slaves are enabled at the same time and a message is sent, the signals will interfere and the response
will not be properly read.

sales@frederickscompany.com + 1 215 947 2500 www.frederickscompany.com tfc_an1006 rev A page 7

RS-232
RS-232 (TIA-232) is a common serial communication protocol. A 3-wire version of RS-232 is available on both the 1-
6200-006 and 1-6200-012 signal conditioners. Connecting RS-232 consists of connecting the grounds together, and
connecting each Rx to the other device’s Tx.

In this application, we will use the Arduino’s SoftwareSerial library to create a virtual serial port to use. This library
gives us the ability to invert the signals on the port, which is necessary to communicate with the sensor. It also keeps
the hardware serial port available for other uses. To create the circuit for RS-232, simply connect D10 (our virtual RX
pin) to OUT and D11 (our virtual TX) to IN. This is shown in figure 5.

Figure 5 Schematic for connecting 1-6200-006 to Arduino with RS-232 and the SoftwareSerial library

Using SoftwareSerial, you can initialize the virtual serial port with the following code:

SoftwareSerial Sensor(10, 11, true); //RX, TX, inverse

void setup() {
 Sensor.begin(9600); //RX, TX, invert
}

Note that devices with UART TTL serial ports (like the Arduino) need an inverted serial connection, or it will not be able
to communicate. With an Arduino, this is done with the third argument when creating the virtual serial port (“true”
for an inverted signal).

https://www.frederickscompany.com/products/1-6200-006/
https://www.frederickscompany.com/products/1-6200-006/
https://www.frederickscompany.com/products/1-6200-012/

sales@frederickscompany.com + 1 215 947 2500 www.frederickscompany.com tfc_an1006 rev A page 8

To read tilt through RS-232, first send the command for the data you want, then read the data from the port. The code
to read the x axis, y axis, and temperature values is below:

 Sensor.print('x'); // send command for x axis tilt
 delay(50); // delay to give time for response
 b = 0;
 while (Sensor.available() != 0 && b < 8) {
 x[b++] = Sensor.read(); // read received bytes into char array
 }

 Sensor.print('y'); // send command for y axis tilt
 delay(50);
 b = 0;
 while (Sensor.available() != 0 && b < 8) {
 y[b++] = Sensor.read();
 }

 Sensor.print('t'); // send command for temperature
 delay(50);
 b = 0;
 while (Sensor.available() != 0 && b < 8) {
 temperature[b++] = Sensor.read();
 }

The definitions of all RS-232 commands are available on the datasheet for the signal conditioner.

The response from this code will be an 8-byte character array, terminated by newline and carriage return characters
(0x0a, 0x0d). This will not be a string, so it will most likely have to be converted to a string. If necessary, it can also be
converted to an int.

 // convert char array to string
 x[b - 2] = '\0';

 // convert string to 16-bit int
 xInt = atoi(x);

The code above replaces the newline character with the null character, terminating the string immediately after the
last character. This requires using the b variable, so it will likely have to be done immediately after receiving the meas-
urement. To achieve this without using the b variable, the termination character can also be placed at the end of the
array, but this will leave trailing spaces and characters.

sales@frederickscompany.com + 1 215 947 2500 www.frederickscompany.com tfc_an1006 rev A page 9

RS-485
RS-485 (TIA-485) is a serial communication standard that works well over long distances and in electrically noisy envi-
ronments. It is available on the 1-6200-008 signal conditioner. The Arduino Uno does not support RS-485 on its own,
but a converter can be used to facilitate communication to any of our RS-485 products.

On most RS-485 converters, the DI (Data In) and RO (Receive Out) are the Rx and Tx respectively. The RE (Receive
Enable) and DE (Data Enable) control when the converter will send and receive RS-485 data; these can generally be
connected and toggled together (high to send data, low to receive data). The A and B connections on the converter
connect to A and B on the signal conditioner. The schematic for this circuit is shown in figure 6.

Figure 6 Schematic for connecting 1-6200-008 to Arduino with RS-485. RS-485 converter used as intermediary

The RS-485 commands used to communicate with the signal conditioner use the following format:

*xxyy#

The * is the start character, which begins each command. xx is the address the command is being sent to. By default,
this will be 99 on the 1-6200-008. yy is the command itself. The # signals the end of the command. For example, the
command to read the x axis tilt on address 99 is *9911#. All available commands can be found on the 1-6200-008
datasheet.

With the RS-232 to RS-485 converter inline, these commands can be sent to the converter with RS-232. The converter
will then send them to the signal conditioner with RS-485. The setup function will be the same as it was for the RS-232
signal conditioner. The code below shows how this configuration can be used to read data from the signal conditioner:

 // x axis tilt
 digitalWrite(9, HIGH); // enable transmission
 Sensor.print("*9911#"); // send x axis command
 digitalWrite(9, LOW); // enable reception
 delay(25); // wait for sensor to respond
 b = 0;
 while (Sensor.available()) {

 x[b++] = Sensor.read(); // store response in a char array
 }

 // y axis tilt
 digitalWrite(9, HIGH); // enable transmission
 Sensor.print("*9921#"); // send y axis command
 digitalWrite(9, LOW); // enable reception
 delay(25);
 b = 0;
 while (Sensor.available()) {

 y[b++] = Sensor.read(); // store response in char array
 }

https://www.frederickscompany.com/products/1-6200-008/

sales@frederickscompany.com + 1 215 947 2500 www.frederickscompany.com tfc_an1006 rev A page 10

 // temperature
 digitalWrite(9, HIGH); // enable transmission
 Sensor.print("*9941#"); // send temperature command
 digitalWrite(9, LOW); // enable reception
 delay(25);
 b = 0;
 while (Sensor.available()) {

 temperature[b++] = Sensor.read(); // store response
 }

Like with RS-232, the response will be a character array terminated by a new line and carriage return. If you would like
to treat the array as a string, you will have to append the null character (‘\0’).

Addressed RS-485
It is possible to connect up to 32 1-6200-008 signal conditioners to a single bus. The signal conditioners can then be
assigned addresses, providing a way for each sensor to determine whether to respond. Note that it is important to
avoid connecting multiple sensors with the same address, as the sensors will interfere with each other’s transmissions.

By default, the address of the signal conditioner will be 99. To change it, make sure it is the only connected device with
that address. Then, use the command *xx81Azz#, where xx is the current address and zz is the new address. For
example:

 Sensor.print("*9981A01#"); // change address from 99 to 01

Once the address has been changed, you will not be able to access the sensor using commands that start with 99
anymore. Instead, the new address 01 will replace the 99 in all commands. For example, the command to read product
info would change from *9980# to *0180# after running the command above.

Once each sensor has been assigned a unique address, they can be attached to the circuit. Each signal conditioner can
connect to the same bus with no additional components or connections. See figure 7 for a schematic showing this.

Figure 7 Schematic for connecting (4) 1-6200-008 signal conditioners to an Arduino with RS-485

https://www.frederickscompany.com/products/1-6200-008/

sales@frederickscompany.com + 1 215 947 2500 www.frederickscompany.com tfc_an1006 rev A page 11

An example of a program reading from multiple addressed RS-485 sensors is given below. This code is written for a
circuit connected to 4 sensors, addressed 8 – 11.

char addr[4][3] = {"08", "09", "10", "11"};
for (int i = 0; i < 4; i++) { // run this code for every address
 // x axis tilt
 digitalWrite(9, HIGH); // enable transmission
 sprintf(cmd, "*%2s11#", addr[i]); // create x axis command
 Sensor.print(cmd); // send x axis command
 digitalWrite(9, LOW); // enable reception
 delay(25); // wait for sensor to respond
 b = 0;
 while (Sensor.available()) {

 x[b++] = Sensor.read(); // store response from sensor in a char array
 }

 // y axis tilt
 digitalWrite(9, HIGH); // enable transmission
 sprintf(cmd, "*%2s21#", addr[i]); // create command
 Sensor.print(cmd); // send command
 digitalWrite(9, LOW); // enable reception
 delay(25);
 b = 0;
 while (Sensor.available()) {

 y[b++] = Sensor.read(); // store response
 }

 // temperature
 digitalWrite(9, HIGH); // enable transmission
 sprintf(cmd, "*%2s41#", addr[i]); // create command
 Sensor.print(cmd); // send command
 digitalWrite(9, LOW); // enable reception
 delay(25);
 b = 0;
 while (Sensor.available()) {

 temperature[b++] = Sensor.read(); // store response
 }
}

The responses will be 8-byte character arrays containing the ASCII characters for a 16-bit number.

Contact Us
If you have any questions, please feel free to contact us by email or phone.

The Fredericks Company
2400 Philmont Avenue

Huntingdon Valley, PA 19006
web: www.frederickscompany.com

email: sales@frederickscompany.com
tel: +1 215 947 2500

http://www.frederickscompany.com/
mailto:sales@frederickscompany.com

